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Abstract

Wave intensity analysis is a time domain method for studying waves in elastic tubes. Testing the ability of the method to extract

information from complex pressure and velocity waveforms such as those generated by a wave passing through a mismatched elastic

bifurcation is the primary aim of this research. The analysis provides a means for separating forward and backward waves, but the

separation requires knowledge of the wave speed. The PU-loop method is a technique for determining the wave speed from

measurements of pressure and velocity, and investigating the relative accuracy of this method is another aim of this research.

We generated a single semi-sinusoidal wave in long elastic tubes and measured pressure and velocity at the inlet, and pressure at

the exit of the tubes. In our experiments, the results of the PU-loop and the traditional foot-to-foot methods for determining the

wave speed are comparable and the difference is on the order of 2.970.8%. A single semi-sinusoidal wave running through a

mismatched elastic bifurcation generated complicated pressure and velocity waveforms. By using wave intensity analysis we have

decomposed the complex waveforms into simple information of the times and magnitudes of waves passing by the observation site.

We conclude that wave intensity analysis and the PU-loop method combined, provide a convenient, time-based technique for

analysing waves in elastic tubes. r 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The aim of this research is to test experimentally the
relative accuracy of the PU-loop method for measuring
wave speed in elastic tubes. Also, to test the ability of
wave intensity analysis to determine the times and the
magnitudes of waves passing by an observation site, in
elastic tubes and bifurcations, from the complex
pressure and velocity waveforms. The reflections coeffi-
cient of elastic bifurcations is also investigated.
While some researchers have chosen to investigate

blood flow in arteries by constructing mock circulations
with specifications that simulate in vivo conditions
(Bowles et al., 1991), we have taken an alternative
approach. The circulatory system is complicated and
attempts to simulate it physically can sometimes
generate more questions than useful answers. We
therefore designed a simple but well characterised

system that can be used for studying the times and
magnitudes of waves in elastic tubes.
The wave speed, c; from the 1D wave theory (Skalak,

1972) is

c ¼

ffiffiffiffiffiffiffi
1

rD

s
; ð1Þ

where D is the distensibility of the conduit and r the
density of the fluid. It has been observed that wave
speeds in the elderly are higher than in younger people
(Avolio, 1990). This phenomenon is thought to be a
result of the aorta losing its elasticity, and the reduced
distensibility leads to a higher wave speed. Accordingly,
we studied the wave speed in a latex tube with a
reinforced wall and compared the results with those
obtained in the same sized tube with an ordinary elastic
wall.
Moens (1878) and Kortweg (1878) arrived indepen-

dently in the same year to the equation that is named
after them, which is a special form of Eq. (1), and only
valid for thin walled tubes with homogeneous elastic
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properties

c ¼

ffiffiffiffiffiffi
Eh

rd

s
; ð2Þ

where E is the Young’s modulus, h is wall thickness and
d is internal diameter. From Eq. (2) we expect different
wave speeds for tubes with the same wall properties but
different diameters. Therefore, we investigate the
relative accuracy of the PU-loop method, by comparing
its results to the results of the traditional foot-to-foot
method in elastic tubes of different diameters but same
wall thickness.
Several methods have been proposed to identify the

reflection sites in vivo. Westerhof et al. (1973) used the
input impedance to calculate the distance to the nearest
reflection site and Van Den Bos et al. (1976) introduced
a method based on the time delay between the forward
and backward components of the pressure waveform.
Murgo et al. (1980) suggested the temporal time from
the initial pressure upstroke to the pressure inflection
point is the time that takes the wave to run forward, be
reflected and arrive back, and with knowledge of the
wave speed the distance to reflection site can be
determined. More recently Pythoud et al. (1996a)
proposed the ‘‘reflection profile’’ method to determine
the distances of the most important reflection sites by
deconvoluting the backward pressure wave. In this
paper, we examine the relative accuracy of wave
intensity analysis to determine the distance to the
reflection site of open or closed-ended elastic tubes.
Also, because of the physiological significance of the
arrival time of the reflected waves at the aortic root we
investigate the ability of wave intensity analysis to
determine the arrival times and the magnitudes of the
waves reflected from a mismatched bifurcation and open
and closed ended elastic tubes.

2. Methods

A schematic diagram of the experiment is shown in
Fig. 1 and a description of the individual elements
follows.

2.1. The pump

A positive displacement syringe pump was used to
generate an approximately sinusoidal pulse wave. It
consists of a cylinder with a 3 cm internal diameter, and
a piston that is driven by a connecting rod attached to a
wheel (Scotch yoke), which generates a sinusoidal
pattern. An electric motor running at a constant speed
of 20 rpm drives the wheel to produce a linear
displacement of 4 cm and a displaced volume of 28ml.
In all of the experiments we generated and analysed a
single half-sinusoidal pulse, in which the piston moved
forward approximately from its bottom to its top dead
centre position.

2.2. Tubes and bifurcations

In all of the experiments we used elastic tubes made of
latex (3S Health Care, London, UK). Tubes were
uniform along their lengths with a circular cross-
sectional area and were obtained with a standard length
of 110 cm. When we needed to use a longer tube, we
attached two tubes by glueing them together with liquid
latex. We constructed elastic bifurcations by similarly
attaching the two daughter tubes to the mother tube and
glueing them with liquid latex with a bifurcation angle
of 301. We used tubes with 1 and 0.5 in diameter for
which we measured the wall thickness and found there
was no difference between the two tubes. It was assumed
that all tubes had the same Young’s modulus.
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Fig. 1. A schematic diagram of the experiment. All elements of the experiment are on the same horizontal plane.
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To eliminate gravitational and contact stresses
between the elastic tubes and any hard surfaces during
the experiments, the tube was immersed in an open
trough containing 0.9% saline. The tubes were able to
extend and distend freely and were fully immersed in the
saline. We note that there will be a hydrostatic pressure
difference between the top and bottom surfaces of the
latex tube, however we expect its effect to be minimal
and therefore ignored its effect.
To produce a stiffer wall than that of a normal latex

tube, we used a similar method to that used by
Papageorgio and Jones (1987a, b). A latex tube of
110 cm length and 0.5 in diameter was mounted on a
well-polished wooden rod. A cotton thread was wound
around the tube with a pitch of approximately 451 and
was fixed to the tube by liquid latex, which was left to
cure several hours.
The reflection sites were created by either applying a

clamp causing a closed-end reflection, or by connecting
the tube to a reservoir open to the atmosphere causing
an open-end reflection.

2.3. Reservoirs

We used two reservoirs one upstream and one down
stream, both were made of hard plastic, cylindrical and
10 cm in diameter. In order to minimise inertial effects,
we made sure that the level of saline in the reservoirs was
only high enough to prevent pump cavitations and air
bubbles entering the system.

2.4. Measurements

Pressure and velocity at the inlet of the tube and
pressure at the exit of the tube were recorded
simultaneously. At the inlet of the tube, the pressure
and velocity were measured using an 8F catheter
(SVPC 684\A, Millar, Texas, USA) with a strain
gauge pressure transducer and an electromagnetic
flow sensor connected to a flow-meter (Cliniflow II,
710DE, Carolina Medical Electrical Inc., North Car-
olina, USA). At the exit of the tube, pressure was
measured using a strain gauge pressure transducer
connected to the tube through a side gate (Spectramed,
California, USA). Data were sampled at a frequency of
125Hz.

3. Analysis

The PU-loop method for determining wave speed is
described in our previous work (Khir et al., 2001a), and
essentially depends on the validity of the water hammer
equation

dP7 ¼ 7rcdU7; ð3Þ

where 7 indicates forward and backward waves, dP &
dU are the pressure and velocity differentials, respec-
tively and c is the wave speed. Eq. (3) can be used for
calculating wave speed if waves are unidirectional.
During the earliest part of the cycle (half-sinusoid), it
is likely that only forward waves are present at the inlet
of the tube, since it would be too early for the arrival of
reflected waves. If we plot the measured pressure against
the measured velocity we obtain the PU-loop, whose
slope during the very early part of the ejection period
equals rc:
To calculate the wave speed by the foot-to-foot

method we used a technique introduced by Latham
(1988) to identify the foot of the wave. The technique
involves extrapolating the initial pressure upstroke and
the pressure prior to the initiation of the pump. The
intersection point of the two extrapolations is considered
the foot of the pressure wave. The wave speed is
calculated by measuring the time it takes for the foot of
the wave to travel the known distance between the
pressure transducers at the inlet and distal end of the tube.
We used wave intensity analysis for studying the

waves in elastic tubes. The technique is a time domain
analysis based on the method of characteristics (Parker
and Jones, 1990). Wave intensity, dI ; is defined as the
amount of energy carried by the wave per cross-
sectional area of the vessel and can be calculated as

dI ¼ dP dU : ð4Þ

Wave intensity analysis has a number of distinct
advantages; the method is a time domain analysis,
which makes it easier to relate events directly to time, no
assumption is made about linearity and this analysis can
accommodate viscoelastic, convective and frictional
effects. Originally, Parker and Jones suggested a linear
method for the separation of waves into their forward
and backward components. Pythoud et al. (1996b)
proposed a nonlinear technique for the separation of
waves, also based on the method of characteristics, but
they found the difference between the linear and the
nonlinear methods was on the order of 5–10%, which is
of the same magnitude as the experimental error.
Therefore, we used the linear method for wave separa-
tion. The forward and backward pressure and velocity
differences are

dP7 ¼ 1
2
ðdP7rcdUÞ; ð5Þ

dU7 ¼
1

2
dU7

dP

rc

� �
: ð6Þ

Therefore, we can calculate the wave intensity of the
forward and backward waves as

dI7 ¼ 7
1

4rc
ðdP7rc dUÞ2: ð7Þ

The separated backward wave intensity can be used to
estimate the distance to a wave reflection site. In our
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experiments the reflection site was created by either
clamping the tube, causing a closed-end reflection, or by
connecting the tube to a reservoir open to the atmo-
sphere, causing an open-end reflection. The onset of the
separated backward wave intensity indicates the length
of time that it took the wave to travel from the inlet of
the tube, be reflected at the reflection site and arrive
back to the inlet of the tube. If the wave speed is known,
then the distance to the reflection site can be calculated,
L ¼ 1

2
c Dt; where L is the distance to the reflection site

and Dt is time of onset of the separated backward wave
intensity.
The analysis of reflections at mismatched bifurcations

in 1D has been discussed by Caro et al. (1978). The pulse
wave is partially reflected at the bifurcation and
returned to the inlet of the mother tube and the
transmitted waves continue to travel downstream in
the daughter tubes. The transmitted waves are reflected
when they meet the reservoir in one daughter tube and
the clamp in the other. These two reflected waves will
run backward towards the bifurcation and will be
reflected again when they meet the bifurcation. The
transmitted part of these reflected waves will continue
running towards the inlet of the mother tube, and down
the other daughter tube, while the re-reflected waves will
travel forward in the same daughter tube. This process
of generating new waves will continue until all waves
diminish in magnitude because of the effect of dissipa-
tion.
The reflection coefficient of a bifurcation, R; is defined

as the ratio of the magnitude of the reflected wave, dP0

compared to that of the incident wave, DP0 and can be
written as

R �
dP0

DP0
¼

Y0 � Y1 � Y2

Y0 þ Y1 þ Y2
; ð8Þ

where the admittance of vessel i is Yi ¼ Ai=rci; A is the
cross-sectional area of the vessel and 0, 1 and 2 refer to
the parent and daughter tubes, respectively.
If the product of Young’s modulus and wall thickness

is a constant in all of the vessels, as is the case in this
study, then from Eq. (2) the relationship between the
wave speed in the parent and daughter vessels varies as
the inverse square root of the diameter

C1

C0
¼

A0

A1

� �1=4

ð9Þ

and the reflection coefficient for a symmetrical bifurca-
tion reduces to

R ¼
21=4 � a5=4

21=4 þ a5=4
; ð10Þ

where a ¼ ðA1 þ A2Þ=A0:
In studying the waves running through the bifurcation

we refer to the mother tube as 0 and the daughters as
tubes 1 and 2. The waves travelling forward and

backward will be denoted by ‘+’ and ‘�’ respectively.
Therefore, a wave that runs in the path 0–0 means that it
runs from the inlet of the mother tube, is reflected by the
bifurcation then runs backward towards the inlet of the
mother tube. The path 0 1–1–0 means that the wave runs
from the inlet of the mother tube towards the bifurca-
tion, is transmitted into the daughter tube 1, is reflected
backwards to the bifurcation and finally runs backwards
to the inlet of the mother tube.

4. Results

4.1. PU-loops

We tested the relative accuracy of the PU-loop for
determining wave speed in our experiments by compar-
ing its results to the results of the traditional foot-to-foot
method. We tested the method in latex tubes with 1,
0.5 in diameter and a latex tube with hardened wall with
0.5 in diameter. Figs. 2a and b show the wave speed
measured by both methods in a 1 in diameter latex tube.
The results are given in Table 1 and the overall
difference between both methods is in the order of
2.970.8%. We calculated the relative difference be-
tween the results of the PU-loop and foot-to-foot
methods as the ratio of the difference between the
results of both methods (foot-to-foot minus PU-loop) to
their average (Bland and Altman, 1986).

4.2. Estimation of the distance of the reflection site

We clamped the tubes at different sites. From the
measured pressure and velocity, we calculated the wave
speed and the separated wave intensities using (7). We
then calculated the distance to the clamp or to the open-
ended reflection site in unclamped tubes and compared
it with the physically measured distance. Fig. 3a shows
the measured pressure and velocity in a 0.5 in latex tube
that is clamped 30 cm away from the inlet of the tube.
Fig. 3b shows the separated wave intensity, where the
calculation of the occlusion site is 31 cm giving an error
of 3.3%. Table 2 includes the results of all of the
experiments, compared with the measured distances.
The overall average error of wave intensity analysis in
detecting the distance of the reflecting site is in the order
of 1.774.6%. The error is calculated as the ratio of the
difference between the calculated and the measured
distances (measured minus calculated) to the measured
distance.

4.3. Analysis of reflections in bifurcations

Fig. 4 shows typical pressure and velocity waveforms
measured at the inlet of the mother tube which is 105 cm
away from the centre of a bifurcation with a ¼ 0:5: This
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bifurcation has a mother tube of 1 in diameter and the
two daughter tubes of 0.5 in diameter each. One of the
daughter tubes is clamped 70 cm away from the centre of
the bifurcation and the other daughter is connected to
open to the air reservoir at a distance of 105 cm from the
centre of the bifurcation. The wave intensity is
calculated and the reflected waves are shown as
individual peaks in Fig. 5. Each individual peak
represents one or more reflected waves, depending on
their arrival time to the measurement site. Table 3
contains a description of the possible waves with their
paths and a comparison between the theoretical and the
calculated arrival times of reflected waves to the
measurement site at the inlet of the mother tube.
The measured reflection coefficient in this experiment

calculated as the ratio of the magnitude of the second
pressure peak minus the pressure at the onset of the
second peak to the magnitude of the first pressure peak,
is R ¼ 0:48: From Eq. (10) the bifurcation of this
experiment is expected to produce a reflection coefficient

of R ¼ 0:45: Experimental result is in good agreement
with theoretical results and the difference is on the order
of 7%.

5. Discussion and conclusions

As seen in Fig. 1, the path of the waves included more
than the latex tube; portex connectors were used to give
access to the measurement catheter and polyurethane
tubing to connect the pump and the downstream
reservoir. However, since they were made of a much
more rigid material than the latex tubing, their wave
speeds are much larger and the time taken to traverse
these parts of the wave path will be an order of
magnitude smaller. For example, the wave speed in the
20 cm long polyurethane tube connecting the latex tube
to the downstream reservoir, using Eq. (2), is approxi-
mately 43m/s (E ¼ 10Mpa, h ¼ 0:3 cm, d ¼ 1:5 cm and
r ¼ 1080 kg/m3). The wave travel time in that tube is
o5ms, which is less than one sampling period. We have
therefore neglected those rigid parts of the path of the
wave travel in our wave timing calculations, since they
would affect the results negligibly.
We assumed that reflections caused at an open-ended

tubes have no time lag. The reservoir is more rigid than
the polyurethane connecting tubes and the latex tubes,
hence the wave speed in the reservoir will be so high that
it will affect the results negligibly. Also, the amount of
saline injected by the pump is approximately 28ml,
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Fig. 2. Wave speed measured in a 1 in diameter latex tube by (a) PU-loop method. The slope of the initial part of the PU-loop indicates wave speed

of 3.47m/s and the arrows indicate the direction of the loop. (b) foot-to-foot method. The time that takes the wave to run from one site to the other,

Dt; is 62ms as indicated by the arrows which point at the foot of the wave at each site. The distance between the two sites is 220 cm and the calculated

wave speed is 3.55m/s.

Table 1

Average wave speed calculated by the PU-loop and foot-to-foot

methods in latex tubes

Tube size PU-loop (m/s) Foot-to-foot (m/s) Difference %

1 in 3.470.8 3.570.8 2.2

0.5 in 4.571.2 4.671.1 2.9

0.5 in ‘‘hard wall’’ 5.371.1 5.571.2 3.7

Average difference 2.970.8
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which will increase the level of saline in the reservoir
only 3.6mm. This gives us confidence that the effect of
oscillation will be minimal and the downstream reser-
voir would behave as an open-end. We isolated the
upstream reservoir during ejection by including a one-
way valve, Fig. 1.
Both methods for determining wave speed compared

in this study, PU-loop and foot-to-foot exhibited some
level of sensitivity. While the PU-loop method is
sensitive to the choice of the portion of the curve used
to determine the slope, the foot-to-foot is sensitive to
determining the foot of the wave. However, the results
of the two methods agree well and the small differences
between the results of the two methods could not be
attributed to any specific reason.
We compared the experimental results of measuring

the wave speed using the PU-loop with the theoretical

results that can be obtained by using Eq. (2). We
measured the wall thickness of latex tube sizes in the
range of 0.5–1 in diameter and found them all to have
the same wall thickness, 0.25mm. From Eq. (9), the
ratio of the wave speed of a 1 in diameter tube to that of
a 0.5 in diameter tube should be

ffiffiffiffiffiffiffi
0:5

p
: The ratio of wave

speeds measured using the PU-loop was 0.733, which is
in good agreement with the theoretical prediction.
The in vitro set up used in this study is similar to that

used by Stergiopulos (1998), who estimated pressure-
dependant wave speeds taking into consideration the
nonlinear elastic properties of the wall. His analysis
yielded errors on the order of 20% in calculating the
wave speed and a similar error in estimating the
distances to the reflection sties. In our experiments the
PU-loop and wave intensity analysis yielded differences
in calculating wave speed and distance of reflection
approximately 3% and 2%, respectively.
From Table 3 and Fig. 4 we can see that producing a

single half sinusoidal wave in a rather simple system
with one bifurcation can generate surprisingly complex
pressure and velocity waveforms, which are difficult to
interpret. However wave intensity analysis made it
possible to determine the timing of the waves passing
the observation site at the inlet of the mother tube with a
reasonable accuracy.
There is a similarity between wave intensity curves in

elastic tubes, Fig. 3b, and those seen in the aortic root in
human studies. Fig. 6 shows the wave intensity curve
calculated from pressure and velocity measurements in
the ascending aorta of man in control conditions during
peripheral vascular surgery using strain gauge pressure
transducer and Doppler ultrasound (Khir et al., 2001b).
In elastic tubes there is an initial forward compression
wave (dP > 0) that is due to the piston of the pump
moving forward and increasing the pressure in the tube.
This wave is followed by a backward wave due to the
arrival of the reflected wave from the clamp. The
backward wave is followed by a forward expansion
wave (dPo0) that is due to the piston slowing down
until it finally stops in the second half of the semi
sinusoidal pulse wave. Similarly, in the human aortic
root we observe a forward compression wave due to the
contraction of the heart, followed by a backward
compression wave due to the reflections arriving from
different sites and finally the forward expansion wave
due to the slowing down of contraction decelerating the
blood in the aorta (Parker et al., 1988). Although the
forward compression and expansion waves in this study
should be approximately equal because each of them is
produced by the approximately half semi-sinusoidal
action of the piston, the forward compression and
expansion waves seen in the aortic root of human are
not usually equal, suggesting that the cardiac contrac-
tion phase is not symmetrical. Whilst we are not
drawing similarity between the simple pump used in
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this study and the heart, we believe that the underlying
mechanics of generating the compression and expansion
waves are similar.
The waves reflected from the end of the daughter

tubes are re-reflected as they pass the bifurcation on
their way back towards the inlet of the mother tube.

Some of the reflected and re-reflected waves may arrive
back to the inlet of the mother tube simultaneously, and
be detected by the analysis as a single summation wave,
as is the case for wave K in Fig. 5 and Table 3. Other
reflected and re-reflected waves may arrive back to the

Table 2

The results of detection of the reflection sites calculated by using wave intensity analysis. The calculated distance is compared to the measured

distance of the reflection sites in closed and open-end reflection sites. Closed-end reflection sites were created at various distances by cross clamping

the tubes. The overall average of the error produced by wave intensity analysis in all experiments is 1.774.6%.

Reflection site measured

distance (cm)

Tube

1 in latex (c ¼ 3:4m/s) 0.5 in latex (c ¼ 4:5m/s) 0.5 latex with hardened wall

(c ¼ 5:3m/s)

Calculated

distance (cm)

Error % Calculated

distance (cm)

Error % Calculated

distance (cm)

Error %

30 (closed end) 29 �3.3 31.5 5.0 28 �6.6
40 (closed end) — — — — 38 5.0

60 (closed end) 61 1.6 62 3.3 — —

80 (closed end) — — — — 74 �7.5
90 (closed end) 86 �4.4 92 2.2 94 4.4

120 (closed end) 118 �1.6 — — — —

150 (closed end) 154 2.6 — — — —

180 (closed end) 176 �2.2 — — — —

200 (closed end) 195 �2.5 — — — —

220 (open end) 204 �7.2 — — — —

200 (open end) — — 189 �5.5 — —

110 (open end) — — — — 106 �4.0

Average error 2.1273.13 1.2574.54 1.7476.02
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Fig. 4. Pressure and velocity measured at the inlet of the mother tube

of a bifurcation with a ¼ 0:5: Mother tube is 105 cm long and 1 in

diameter. Both daughter tubes are 0.5 in diameter each. One daughter

is connected to a reservoir that is open to the air, 105 cm away from the

centre of the bifurcation and the other daughter tube is clamped at

70 cm away from the centre of the bifurcation. The ratio of the

pressure difference between the two small arrows, dP0; to the pressure

difference between the long arrows, DP0; is the reflection coefficient,

R ¼ 0:48; which is in good agreement with the theoretical value R ¼
0:45:

Fig. 5. Reflected waves arriving back to the inlet of the mother tube in

a bifurcation with a ¼ 0:5: The mother tube is 105 cm long and 1 in

diameter. Both daughter tubes are 0.5 in diameter. One of the daughter

tubes is connected to a reservoir that is open to the atmosphere, 105 cm

away from the centre of the bifurcation, and the other daughter is

clamped 70 cm away from the centre of the bifurcation. Peaks of the

reflected waves represent individual waves whose time is marked by the

onset of each reflected wave. Time is continuous but the abscissa for

t > 2 has been expanded in order to show smaller waves at later times.
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inlet of the mother tube at different times such as in
waves D, H, L and R but still detected by the analysis as
one wave. The reason is due to the very short interval
between the arrival of these waves. The complexity of
waves in this simple system with one bifurcation gives us
an idea about how much more complicated is the
arterial tree with waves reflecting, re-reflecting and
interacting in a huge network of bifurcations. It is
worth noting that reflected waves in the human arterial
system arriving back to the aortic root are detected as
one backward wave in the wave intensity analysis,
Fig. 6. This is due to the shorter segments of vessels, and
multiple reflections and re-reflections.
The PU-loop and wave intensity analysis have been

used to study arterial waves in humans (Khir et al.,
2001b). Apart from the possible difficulty in obtaining
simultaneous pressure and velocity measurements in

humans, the main limitation in using these methods is
the possibility of a time delay between the measurements
of the pressure and velocity. If the velocity lags the
pressure, the initial slope of the PU-loop will yield an
incorrect, higher wave speed and if the pressure lags the
velocity, the PU-loop will yield a lower wave speed.
Also, any lag between the pressure and velocity may
introduce artificial waves or exaggerate existing ones in
the wave intensity analysis (Khir, 1999). Therefore, it is
important to account for any time delay between the
pressure and the velocity prior to carry out the analysis.
We conclude that the accuracy of the PU-loop

method is at least as good as the traditional foot-to-
foot method for measuring wave speed. The method has
an advantage that may be clinically relevant; the method
uses one measurement site, which makes it less invasive
than other methods where two sites are required. Also,

Table 3

The waves paths with the theoretical and the calculated arrival time to the inlet of the mother tube. (�) denotes a backward wave, (0) the mother

tube, 105 cm long and 1 in diameter, (1) the daughter tube that is occluded at a distance to 70 cm from the centre of the bifurcation and (2) the

daughter tube that is connected to the open-to-the air reservoir, 105 cm away from the centre of the bifurcation and. Both daughters are 0.5 in

diameter. The sketch includes the length and time it takes the wave to run through and back each arm of the bifurcation. Wave speed in the mother

tube is 3.4m/s and for both daughter tubes is 4.5m/s.

Wave Wave path Theoretical arrival time (s) Calculated arrival time (s) Difference %

A 0–0 0.61 0.6 2.0

B 0 1–1 0 0.92 0.9 2.0

C 0 2–2–0 1.06 1.04 2.0

D 0–00–0 1.22 1.28 �5.0
0 1–1 1–1–0 1.23 1.28

E 0 1–1 2–2–0 1.38 1.35 2.0

0 2–2 1–1–0

F 0 2–2 2–2–0 1.53 1.48 3.0

0–00 1–1–0

G 0–0 0 2–2–0 1.68 1.68 0.00

H 0–0 0–0 0–0 1.83 1.88 �3.0
0 1–1 1–1–0 0–0 1.84

K 0–0 0 1–1–0 0–0 2.14 2.08 3.0

0 2–2 2–2–0 0–0

0–0 0–0 0 1–1–0

L 0–0 0–0 0–0 0–0 2.44 2.37 3.0

0–0 0 1–1–0 0 1–1–0 2.45

M 0–0 0 1–1–0 0 2–2–0 2.6 2.58 2.0

0 2–2 2–2–0 0 2–2–0

N 0–0 0 1–1–0 0–0 0–0 2.75 2.73 1.0

0–0 0–0 0 1–1–0 0–0

P 0–0 0–0 0–0 0–0 0–0 3.05 2.95 3.0

R 0–0 0 2–2–0 0 1–1 1–1–0 3.36 3.38 �1.0
0–0 0–0 0–0 0–0 0 1–1 2–2–0 3.37

Average difference 1.072.5
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the method is easy to implement requiring only the
determination of the slope of the initial linear part of the
PU-loop.
Wave intensity analysis is a convenient time domain

method for studying the propagation of waves in elastic
tubes and the arterial system. Wave intensity analysis
and the PU-loop method provide a way for separating
the forward and backward components of a wave, hence
determining the predominant direction of waves from
measurements of pressure and velocity. The results have
shown that the method is able to decompose a complex
waveform into simple results providing a reasonably
accurate information on the times and magnitudes of
waves passing by the observation site.
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forward compression wave followed by a backward expansion wave
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